首页> 外文OA文献 >Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge
【2h】

Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge

机译:二维稳定超声速欧拉流经Lipschitz楔的适定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L 1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L 1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L 1 norm, and prove that the functional decreases in the flow direction. Then the L 1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained. © 2007 Elsevier Inc. All rights reserved.
机译:对于超音速欧拉流经过顶点角小于极角的直边楔形而言,存在一个从楔形顶点发出的激波前部,并且该激波前部通常很强,特别是当楔形的顶角为大。在本文中,当进入流的总变化较小时,我们建立了经过Lipschitz楔的二维稳态超音速Euler流的L 1适定性,该Lipschitz楔的边界斜率函数具有较小的总变化。在这种情况下,Lipschitz楔形扰动了流动,并且波在与强烈的激波前沿和楔形边界相互作用之后反射。我们首先通过波前跟踪方法获得当输入流的总变化较小时BV中解的存在性,然后针对输入流建立解的L 1稳定性。特别是,我们结合了从楔形边界产生的非线性波,以在包含强冲击前部的两个解之间发展出Lyapunov泛函,这等效于L 1范数,并证明了泛函在流动方向上减小。然后,建立了L 1稳定性,因此通过波前跟踪方法建立了解的唯一性。最后,还获得了更广泛类别的溶液(粘度溶液类别)的唯一性。 ©2007 Elsevier Inc.保留所有权利。

著录项

  • 作者

    Chen, G-Q; Li, T-H;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号